- Investigating Objects
- 1.1 Investigating Patterns in Base R
- 1.2 Variable Names
- 1.3 View and Print Data
- 1.4 Missing Values
- 2.1 Subset Atomic Vectors (single bracket)
- 2.2 Subset Lists (single bracket)
- 2.3 Subset Lists (double bracket)
- GitHub and R Markdown
- 2.4 Subset Data Frame
- 3.0 Subset Function
- Investigating Objects
- Subsetting with [[]] & $
- Subsetting with [] & $
- Subsetting with subset()
- 1.1 & 1.2 attributes and class - Week 7 (11/05/22)
- 2.0 attributes and class object class - Week 7 (11/05/22)
- 3.0 attributes and class factor class - Week 7 (11/05/22)
- 4.0 attributes and class labelled class - Week 7 (11/05/22)
- 4.1 attributes and class get labels - Week 7 (11/05/22)
- 4.2 attributes and class set labels - Week 7 (11/05/22)
- 5.0 attributes and class compare labels - Week 7 (11/05/22)
- 1 Introduction & 2 Data structures and types - Week 5 (10/28/22)
- 3 String basics & 4.1 str_length - Week 5 (10/28/22)
- 4.2 str_c() - Week 5 (10/28/22)
- 4.3 str_sub() - Week 5 (10/28/22)
- 5.1.1 Creating date/time objects by parsing input - Week 5 (10/28/22)
- 5.1.2 Create date/time objects from individual components - Week 5 (10/28/22)
- 5.2 Accessing components of date/time objects - Week 5 (10/28/22)
- Lecture for Week 6, Visualizations using ggplot: Section 1 (01/14/22) - Introduction
- Lecture for Week 6, Visualizations using ggplot: Section 2 (01/14/22) - Concepts
- Lecture for Week 6, Visualizations using ggplot: Section 3.1 (01/14/22) - ggplot() and aes() functions
- Lecture for Week 6, Visualizations using ggplot: Section 3.2 (01/14/22) - Adding geometric layers
- Lecture for Week 6, Visualizations using ggplot: Section 3.3 (01/14/22) - Small multiples using faceting
- Lecture for Week 6, Visualizations using ggplot: Section 4.1 (01/14/22) - Labels
- Lecture for Week 6, Visualizations using ggplot: Section 4.2 (01/14/22) - Scales
- Lecture for Week 6, Visualizations using ggplot: Section 4.3 (01/14/22) - Colors
- Lecture for Week 6, Visualizations using ggplot: Section 4.4 (01/14/22) - Themes
- Lecture for Week 6, Visualizations using ggplot: Section 5 (01/14/22) - Exporting plots
- 1.0 introduction - Week 9 (11/18/22)
- 2.0 data structure & data semantics - Week 9 (11/18/22)
- 3.1 defining tidy data & 3.2 diagnosing untidy data - Week 9 (11/18/22)
- 3.3 Common types untidy data - Week 9 (11/18/22)
- 4.1 reshaping wide to long - Week 9 (11/18/22)
- 4.2 reshaping long to wide - Week 9 (11/18/22)
- 5.0 missing values - Week 9 (11/18/22)
- Lecture for Week 10, Part 1 (12/2/22) - Introduction to joins (Section 1)
- Lecture for Week 10, Part 2 (12/2/22) - Keys(Section 2)
- Lecture for Week 10, Part 3 (12/2/22) - Join Data by Multiple Variables(Section 3.1.2)
- Lecture for Week 10, Part 4 (12/2/22) - Inner Joins(Section 3.1)
- Lecture for Week 10, Part 5 (12/2/22) - Outer Joins(Section 3.2)
- Lecture for Week 10, Part 6 (12/2/22) - Filtering Joins(Section 4)
- Lecture for Week 10, Part 7 (12/2/22) - Appending Data(Section 5)
- R Class 2 - Preview
- Lecture for Week 8, Part 1 (11/11/22) - Introduction and Guidelines for EDA
- Lecture for Week 8, Part 2 (11/11/22) - Data Quality Section 3a: One Way Continuos
- Lecture for Week 8, Part 3 (11/11/22) - Data Quality Section 3b: One Way Categorical
- Lecture for Week 8, Part 4 (11/11/22) - Data Quality Section 3c: EDA Two Way