
Investigating objects and data patterns using base R
Managing and Manipulating Data Using R

1 / 107

Lecture outline
1. Investigate objects, base R

1.1 Functions to describe objects
1.2 Variables names
1.3 View and print data
1.4 Missing values

2. Subsetting using subset operators
2.1 Subset atomic vectors using []
2.2 Subsetting lists/data frames using []
2.3 Subsetting lists/data frames using [[]] and $
2.4 Subset Data frames by combining [] and $

3. Subset using subset() function

4. Creating variables

5. Appendix
5.1 Sorting data

2 / 107

Investigate objects, base R

3 / 107

Load .Rdata data frames we will use today

Data on off-campus recruiting events by public universities
▶ Data frame object df_event

▶ One observation per university, recruiting event
▶ Data frame object df_school

▶ One observation per high school (visited and non-visited)
rm(list = ls()) # remove all objects in current environment

getwd()
#> [1] "/Users/cyouh95/anyone-can-cook/rclass1/lectures/patterns_base_r"
#load dataset with one obs per recruiting event
load(url("https://github.com/ozanj/rclass/raw/master/data/recruiting/recruit_event_somevars.RData"))
#load("../../data/recruiting/recruit_event_somevars.Rdata")

#load dataset with one obs per high school
load(url("https://github.com/ozanj/rclass/raw/master/data/recruiting/recruit_school_somevars.RData"))
#load("../../data/recruiting/recruit_school_somevars.Rdata")

4 / 107

Functions to describe objects

5 / 107

Simple base R functions to describe objects

This section introduces some base R functions to describe objects (some of these you
have seen before)

▶ list objects, list.files() and ls()
▶ remove objects, rm()
▶ object type, typeof()
▶ object length (number of elements), length()
▶ object structure, str()
▶ number of rows and columns, ncol() and nrow()

I use the functions typeof() , length() , str() anytime I encounter a new object
▶ Helps me understand the object before I start working with it

6 / 107

Listing objects

Files in your working directory

list.files() function lists files in your current working directory
▶ if you run this code from .Rmd file, working directory is location .Rmd file is stored

getwd() # what is your current working directory
#> [1] "/Users/cyouh95/anyone-can-cook/rclass1/lectures/patterns_base_r"
list.files()
#> [1] "base_r_week1_video_lecture_script.R"
#> [2] "fp1.JPG"
#> [3] "fp2.JPG"
#> [4] "one_carriage_train_vs_contents.png"
#> [5] "patterns_base_r.log"
#> [6] "patterns_base_r.pdf"
#> [7] "patterns_base_r.Rmd"
#> [8] "patterns_base_r.tex"
#> [9] "smaller_trains.png"
#> [10] "test.txt"
#> [11] "three_carriage_train.png"
#> [12] "transform-logical.png"

7 / 107

Objects currently open in your R session

Listing objects currently open in your R session

ls() function lists objects currently open in R
x <- "hello!"
ls() # Objects open in R
#> [1] "df_event" "df_school" "x"

Removing objects currently open in your R session

rm() function removes specified objects open in R
rm(x)
ls()
#> [1] "df_event" "df_school"

Command to remove all objects open in R (I don’t run it)
#rm(list = ls())

8 / 107

Base R functions to describe objects, typeof()

typeof() function determines the the internal storage type of an object (e.g., logical
vector, integer vector, list)

▶ syntax
▶ tyepof(x)

▶ arguments
▶ x : any R object

▶ help:
?typeof

Examples
▶ Recall that a data frame is an object where type is a list

typeof(c(TRUE,TRUE,FALSE,NA))
#> [1] "logical"
typeof(df_event)
#> [1] "list"
typeof(x = df_event)
#> [1] "list"

9 / 107

Base R functions to describe objects, length()

length() function determines the length of an R object

▶ for atomic vectors and lists, length() is the number of elements in the object
▶ syntax

▶ length(x)
▶ arguments

▶ x : any R object
▶ help:

?length

Example, length of an atomic vector is
length(c(TRUE,TRUE,FALSE,NA))
#> [1] 4

Example, length of a list or data frame
▶ length of a list is the number of elements
▶ data frame is a list
▶ length of a data frame = number of elements = number of variables

length(df_event) # = num elements = num columns
#> [1] 33

10 / 107

Base R functions to describe objects, str()

str() function compactly displays the structure of an R object
▶ “structure” includes type, length, and attribute of object and also nested objects
▶ syntax: str(object)
▶ arguments (partial)

▶ object : any R object
▶ max.level : max level of nesting to display nested structures; default NA = all levels

▶ help: ?str

Example, atomic vectors
str(c(TRUE,TRUE,FALSE,NA))
#> logi [1:4] TRUE TRUE FALSE NA
str(object = c(TRUE,TRUE,FALSE,NA))
#> logi [1:4] TRUE TRUE FALSE NA

Example, lists/data frames (output omitted)
x <- list(c(1,2), list("apple", "orange"), list(2, 3)) # list
str(x)

str(df_event) # data frame

11 / 107

Base R functions to describe objects, ncol() and nrow()
ncol() nrow() and dim() functions

▶ Description
▶ ncol() = number of columns; nrow() = number of rows

▶ syntax: ncol(x) nrow(x) dim(x)
▶ arguments

▶ x : a vector, array, data frame, or NULL
▶ value/return:

▶ if object x is an atomic vector: ncol() and nrow() returns NULL
▶ if object x is a list but not a data frame: ncol() and nrow() returns NULL
▶ if object x is a data frame: ncol() and nrow() returns integer of length 1

Example, object is a data frame
ncol(df_event) # num columns = num elements = num variables
#> [1] 33
nrow(df_event) # num rows = num observations
#> [1] 18680
can wrap ncol() or nrow() within str() to see what functions return
#str(ncol(df_event))

Example, object is atomic vector or list that is not a data frame (output omitted)
ncol(c(TRUE,TRUE,FALSE,NA)) # atomic vector
x <- list(c(1,2), list("apple", "orange"), list(2, 3)) # list
nrow(x)

12 / 107

Base R functions to describe objects, dim()

dim() function returns the dimensions of an object (e.g., number of rows and
columns)

▶ syntax: dim(x)
▶ arguments

▶ x : a vector, array, data frame, or NULL
▶ value/return:

▶ if object x is a data frame: dim() returns integer of length 2
▶ first element = number of rows; second element = number of columns

▶ if object x is an atomic vector: dim() returns NULL
▶ if object x is a list but not a data frame: dim() returns NULL

Example, object is a data frame
dim(df_event) # shows number rows by columns
#> [1] 18680 33

str(dim(df_event)) # can wrap dim() within str() to see what functions return
#> int [1:2] 18680 33

Example, object is atomic vector or list that is not a data frame (output omitted)
dim(c(TRUE,TRUE,FALSE,NA)) # atomic vector
x <- list(c(1,2), list("apple", "orange"), list(2, 3)) # list
dim(x)

13 / 107

Variables names

14 / 107

names() function
names() function gets or sets the names of elements of an object

▶ syntax:
▶ get the names of an object: names(x)
▶ set the names of an object: names(x) <- value

▶ arguments (partial)
▶ x : an R object
▶ value : a character vector with same length as object x or NULL

▶ value/return
▶ names(x) returns a character vector of length = length(x) in which each element is

the name of the element of x

Example, get names (of atomic vector)
a <- c(v1=1,v2=2,3,v4="hi!") # named atomic vector
a
#> v1 v2 v4
#> "1" "2" "3" "hi!"
length(a)
#> [1] 4
names(a)
#> [1] "v1" "v2" "" "v4"
length(names(a)) # investigate length of object names(a)
#> [1] 4
str(names(a)) # investigate structure of object names(a)
#> chr [1:4] "v1" "v2" "" "v4"

15 / 107

names() function
names() function gets or sets the names of elements of an object

▶ syntax:
▶ get the names of an object: names(x)
▶ set the names of an object: names(x) <- value

▶ arguments (partial)
▶ x : an R object
▶ value : a character vector with same length as object x or NULL

▶ value/return
▶ names(x) returns a character vector of legnth = length(x) in which each element is

the name of the element of x

Example, set names (of atomic vector)
names(a) <- NULL # set names of vector a to NULL
a
#> [1] "1" "2" "3" "hi!"
names(a)
#> NULL

names(a) <- c("var1","var2","var3","var4") # set names of vector a
a
#> var1 var2 var3 var4
#> "1" "2" "3" "hi!"
names(a)
#> [1] "var1" "var2" "var3" "var4"

16 / 107

Applying names() function to a data frame
Recall that a data frame is an object where type is a list and each element is named

▶ each element is a variable
▶ each element name is a variable name

Example (output omitted)
names(df_event)

Investigate the object names(df_event)
typeof(names(df_event)) # type = character vector
#> [1] "character"
length(names(df_event)) # length = number of variables in data frame
#> [1] 33
str(names(df_event)) # structure of names(df_event)
#> chr [1:33] "instnm" "univ_id" "instst" "pid" "event_date" ...

We can even assign a new object based on names(df_event)
names_event <- names(df_event)
typeof(names_event) # type = character vector
#> [1] "character"
length(names_event) # length = number of variables in data frame
#> [1] 33
str(names_event) # structure of names(df_event)
#> chr [1:33] "instnm" "univ_id" "instst" "pid" "event_date" ...

17 / 107

Variable names

Refer to specific named elements of an object using this syntax:
▶ object_name$element_name

When object is data frame, refer to specific variables using this syntax:
▶ data_frame_name$varname
▶ This approach to isolating variables is very useful for investigating data

#df_event$instnm
typeof(df_event$instnm)
#> [1] "character"
typeof(df_event$med_inc)
#> [1] "double"

18 / 107

Variable names
Data frames are lists with the following criteria:

▶ each element of the list is (usually) a vector; each element of list is a variable
▶ length of data frame = number of variables

length(df_event)
#> [1] 33
nrow(df_event)
#> [1] 18680
#str(df_event)

▶ each element of the list (i.e., variable) has the same length
▶ Length of each variable is equal to number of observations in data frame

typeof(df_event$event_state)
#> [1] "character"
length(df_event$event_state)
#> [1] 18680
str(df_event$event_state)
#> chr [1:18680] "MA" "MA" "MA" "MA" "MA" "MA" "MA" "MA" "MA" "MA" "MA" ...

typeof(df_event$med_inc)
#> [1] "double"
length(df_event$med_inc)
#> [1] 18680
str(df_event$med_inc)
#> num [1:18680] 71714 89122 70136 70136 71024 ...

19 / 107

Variable names

The object df_school has one obs per high school

▶ variable visits_by_100751 shows number the of visits by University of Alabama
to each high school

▶ like all variables in a data frame, the var visits_by_100751 is just a vector
typeof(df_school$visits_by_100751)
#> [1] "integer"
length(df_school$visits_by_100751) # num elements in vector = num obs
#> [1] 21301
str(df_school$visits_by_100751)
#> int [1:21301] 0 0 0 0 0 0 0 0 0 0 ...
sum(df_school$visits_by_100751) # sum of values of var across all obs
#> [1] 3338

We perform calculations on a variable like we would on any vector of same type
v <- c(2,4,6)
typeof(v)
#> [1] "double"
length(v)
#> [1] 3
sum(v)
#> [1] 12

20 / 107

View and print data

21 / 107

Viewing and printing, data frames

Many ways to view/print a data frame object. Here are three ways:
1. Simply type the object name (output omitted)

▶ number of observations and rows printed depend on YAML header settings and on
object “attributes” (attributes discussed in future week)

df_event

2. Use the View() function to view data in a browser
View(df_event)

3. head() to show the first n rows. The default is 6 rows.
#?head
#head(df_event)
head(df_event, n=5)

22 / 107

Viewing and printing, data frames

obj_name[<rows>,<cols>] to print specific rows and columns of data frame

▶ particularly powerful when combined with sequences (e.g., 1:10)

Examples (output omitted):
▶ Print first five rows, all vars

df_event[1:5,]

▶ Print first five rows and first three columns
df_event[1:5, 1:3]

▶ Print first three columns of the 100th observation
df_event[100, 1:3]

▶ Print the 50th observation, all variables
df_event[50,]

23 / 107

Viewing and printing, variables within data frames
Recall that:

▶ obj_name$var_name print specifics elements (i.e., variables) of a data frame
df_event$zip

▶ each element (i.e., variable) of data frame is an atomic vector with length =
number of observations

typeof(df_event$zip)
#> [1] "character"
length(df_event$zip)
#> [1] 18680

▶ each element of a variable is the value of the variable for one observation

Print specific elements (i.e., observations) of variable based on element position

▶ syntax: obj_name$var_name[<element position>]
▶ vectors don’t have “rows” or “columns”; they just have elements
▶ syntax combined with sequences (e.g., print first 10 observations)

df_event$event_state[1:10] # print obs 1-10 of variable "event_state"
#> [1] "MA" "MA" "MA" "MA" "MA" "MA" "MA" "MA" "MA" "MA"
df_event$event_type[6:10] # print obs 6-10 of variable "event_type"
#> [1] "private hs" "private hs" "public hs" "private hs" "public hs"

24 / 107

Viewing and printing, variables within data frames
Print specific elements (i.e., observations) of variable based on element position

▶ syntax: obj_name$var_name[<element position>]

Example, print individual elements
df_event$zip[1:5] # print obs 1-5 of variable for event zip code
#> [1] "01002" "01007" "01020" "01020" "01027"
df_event$zip[1] # print obs 1 of variable for event zip code
#> [1] "01002"
df_event$zip[5] # print obs 5 of variable for event zip code
#> [1] "01027"
df_event$zip[c(1,3,5)] # print obs 5 of variable for event zip code
#> [1] "01002" "01020" "01027"

Print specific elements of multiple variables using combine function c()
▶ syntax:

c(obj_name$var1_name[<element position>], obj_name$var2_name[<element position>],...)
▶ Example: print first five observations of variables "event_state" and

"event_type"

c(df_event$event_state[1:5],df_event$event_type[1:5])
#> [1] "MA" "MA" "MA" "MA" "MA"
#> [6] "public hs" "public hs" "public hs" "public hs" "public hs"

25 / 107

Exercise

Printing exercise using the df_school data frame

1. Use the obj_name[<rows>,<cols>] syntax to print the first 5 rows and 3
columns of the df_school data frame

2. Use the head() function to print the first 4 observations
3. Use the obj_name$var_name[1:10] syntax to print the first 10 observations of a

variable in the df_school data frame
4. Use combine() to print the first 3 observations of variables “school_type” &

“name”

26 / 107

Solution

1. Use the obj_name[<rows>,<cols>] syntax to print the first 5 rows and 3
columns of the df_school data frame

df_school[1:5,1:3]
#> # A tibble: 5 x 3
#> state_code school_type ncessch
#> <chr> <chr> <chr>
#> 1 AK public 020000100208
#> 2 AK public 020000100211
#> 3 AK public 020000100212
#> 4 AK public 020000100213
#> 5 AK public 020000300216

27 / 107

Solution

2. Use the head() function to print the first 4 observations
head(df_school, n=4)
#> # A tibble: 4 x 26
#> state_code school_type ncessch name address city zip_code pct_white
#> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <dbl>
#> 1 AK public 020000~ Beth~ 1006 R~ Beth~ 99559 11.8
#> 2 AK public 020000~ Ayag~ 106 Vi~ Kong~ 99559 0
#> 3 AK public 020000~ Kwig~ 108 Vi~ Kwig~ 99622 0
#> 4 AK public 020000~ Nels~ 118 Vi~ Toks~ 99637 0
#> # ... with 18 more variables: pct_black <dbl>, pct_hispanic <dbl>,
#> # pct_asian <dbl>, pct_amerindian <dbl>, pct_other <dbl>,
#> # num_fr_lunch <dbl>, total_students <dbl>, num_took_math <dbl>,
#> # num_prof_math <dbl>, num_took_rla <dbl>, num_prof_rla <dbl>,
#> # avgmedian_inc_2564 <dbl>, visits_by_110635 <int>,
#> # visits_by_126614 <int>, visits_by_100751 <int>, inst_110635 <chr>,
#> # inst_126614 <chr>, inst_100751 <chr>

28 / 107

Solution

3. Use the obj_name$var_name[1:10] syntax to print the first 10 observations of a
variable in the df_school data frame

df_school$name[1:10]
#> [1] "Bethel Regional High School" "Ayagina'ar Elitnaurvik"
#> [3] "Kwigillingok School" "Nelson Island Area School"
#> [5] "Alakanuk School" "Emmonak School"
#> [7] "Hooper Bay School" "Ignatius Beans School"
#> [9] "Pilot Station School" "Kotlik School"

29 / 107

Solution

4. Use combine() to print the first 3 observations of variables “school_type” &
“name”

c(df_school$school_type[1:3],df_school$name[1:3])
#> [1] "public" "public"
#> [3] "public" "Bethel Regional High School"
#> [5] "Ayagina'ar Elitnaurvik" "Kwigillingok School"

30 / 107

Missing values

31 / 107

Missing values
Missing values have the value NA

▶ NA is a special keyword, not the same as the character string "NA"

use is.na() function to determine if a value is missing

▶ is.na() returns a logical vector
is.na(5)
#> [1] FALSE
is.na(NA)
#> [1] TRUE
is.na("NA")
#> [1] FALSE
typeof(is.na("NA")) # example of a logical vector
#> [1] "logical"

nvector <- c(10,5,NA)
is.na(nvector)
#> [1] FALSE FALSE TRUE
typeof(is.na(nvector)) # example of a logical vector
#> [1] "logical"

svector <- c("e","f",NA,"NA")
is.na(svector)
#> [1] FALSE FALSE TRUE FALSE

32 / 107

Missing values are “contagious”

What does “contagious” mean?
▶ operations involving a missing value will yield a missing value

7>5
#> [1] TRUE
7>NA
#> [1] NA
sum(1,2,NA)
#> [1] NA
0==NA
#> [1] NA
2*c(0,1,2,NA)
#> [1] 0 2 4 NA
NA*c(0,1,2,NA)
#> [1] NA NA NA NA

33 / 107

Functions and missing values example, table()

table() function is useful for investigating categorical variables
str(df_event$event_type)
#> chr [1:18680] "public hs" "public hs" "public hs" "public hs" ...
table(df_event$event_type)
#>
#> 2yr college 4yr college other private hs public hs
#> 951 531 2001 3774 11423

34 / 107

Functions and missing values example, table()
By default table() ignores NA values
#?table
str(df_event$school_type_pri)
#> int [1:18680] NA NA NA NA NA 1 1 NA 1 NA ...
table(df_event$school_type_pri)
#>
#> 1 2 5
#> 3765 8 1

useNA argument controls if table includes counts of NA s. Allowed values:
▶ never (“no”) [DEFAULT VALUE]
▶ only if count is positive (“ifany”);
▶ even for zero counts (“always”)”

nrow(df_event)
#> [1] 18680
table(df_event$school_type_pri, useNA="always")
#>
#> 1 2 5 <NA>
#> 3765 8 1 14906

Broader point: Most functions that create descriptive statistics have options about
how to treat missing values‘

▶ When investigating data, good practice to always show missing values

35 / 107

Subsetting using subset operators

36 / 107

Subsetting to Extract Elements

“Subsetting” refers to isolating particular elements of an object

Subsetting operators can be used to select/exclude elements (e.g., variables,
observations)

▶ there are three subsetting operators: [] , $, [[]]
▶ these operators function differently based on vector types (e.g, atomic vectors,

lists, data frames)

37 / 107

Wichham refers to number of “dimensions” in R objects
An atomic vector is a 1-dimensional object that contains n elements
x <- c(1.1, 2.2, 3.3, 4.4, 5.5)
str(x)
#> num [1:5] 1.1 2.2 3.3 4.4 5.5

Lists are multi-dimensional objects
▶ Contains n elements; each element may contain a 1-dimensional atomic vector or

a multi-dimensional list. Below list contains 3 dimensions
list <- list(c(1,2), list("apple", "orange"))
str(list)
#> List of 2
#> $: num [1:2] 1 2
#> $:List of 2
#> ..$: chr "apple"
#> ..$: chr "orange"

Data frames are 2-dimensional lists
▶ each element is a variable (dimension=columns)
▶ within each variable, each element is an observation (dimension=rows)

ncol(df_school)
#> [1] 26
nrow(df_school)
#> [1] 21301

38 / 107

Subset atomic vectors using []

39 / 107

Subsetting elements of atomic vectors

“Subsetting” a vector refers to isolating particular elements of a vector
▶ I sometimes refer to this as “accessing elements of a vector”
▶ subsetting elements of a vector is similar to “filtering” rows of a data-frame
▶ [] is the subsetting function for vectors

Six ways to subset an atomic vector using []

1. Using positive integers to return elements at specified positions
2. Using negative integers to exclude elements at specified positions
3. Using logicals to return elements where corresponding logical is TRUE
4. Empty [] returns original vector (useful for dataframes)
5. Zero vector [0], useful for testing data
6. If vector is “named,” use character vectors to return elements with matching

names

40 / 107

1. Using positive integers to return elements at specified positions (subset
atomic vectors using [])

Create atomic vector x
(x <- c(1.1, 2.2, 3.3, 4.4, 5.5))
#> [1] 1.1 2.2 3.3 4.4 5.5
str(x)
#> num [1:5] 1.1 2.2 3.3 4.4 5.5

[] is the subsetting function for vectors

▶ contents inside [] can refer to element number (also called “position”).
▶ e.g., [3] refers to contents of 3rd element (or position 3)

x[5] #return 5th element
#> [1] 5.5

x[c(3, 1)] #return 3rd and 1st element
#> [1] 3.3 1.1

x[c(4,4,4)] #return 4th element, 4th element, and 4th element
#> [1] 4.4 4.4 4.4

#Return 3rd through 5th element
x[3:5]
#> [1] 3.3 4.4 5.5

41 / 107

2. Using negative integers to exclude elements at specified positions (subset
atomic vectors using [])

Before excluding elements based on position, investigate object
x
#> [1] 1.1 2.2 3.3 4.4 5.5

length(x)
#> [1] 5
str(x)
#> num [1:5] 1.1 2.2 3.3 4.4 5.5

Use negative integers to exclude elements based on element position
x[-1] # exclude 1st element
#> [1] 2.2 3.3 4.4 5.5

x[c(3,1)] # 3rd and 1st element
#> [1] 3.3 1.1
x[-c(3,1)] # exclude 3rd and 1st element
#> [1] 2.2 4.4 5.5

42 / 107

3. Using logicals to return elements where corresponding logical is TRUE
(subset atomic vectors using [])

x
#> [1] 1.1 2.2 3.3 4.4 5.5

When using x[y] to subset x , good practice to have length(x)==length(y)

length(x) # length of vector x
#> [1] 5
length(c(TRUE,FALSE,TRUE,FALSE,TRUE)) # length of y
#> [1] 5
length(x) == length(c(TRUE,FALSE,TRUE,FALSE,TRUE)) # condition true
#> [1] TRUE
x[c(TRUE,TRUE,FALSE,FALSE,TRUE)]
#> [1] 1.1 2.2 5.5

Recycling rules:
▶ in x[y] , if x is different length than y , R “recycles” length of shorter to

match length of longer
length(c(TRUE,FALSE))
#> [1] 2
x
#> [1] 1.1 2.2 3.3 4.4 5.5
x[c(TRUE,FALSE)]
#> [1] 1.1 3.3 5.5

43 / 107

3. Using logicals to return elements where corresponding logical is TRUE
(subset atomic vectors using [])

x
#> [1] 1.1 2.2 3.3 4.4 5.5

Note that a missing value (NA) in the index always yields a missing value in the
output:
x[c(TRUE, FALSE, NA, TRUE, NA)]
#> [1] 1.1 NA 4.4 NA

Return all elements of object x where element is greater than 3:
x # print object X
#> [1] 1.1 2.2 3.3 4.4 5.5
x>3 # for each element of X, print T/F whether element value > 3
#> [1] FALSE FALSE TRUE TRUE TRUE
x[x>3] # prints only the values that had TRUE at that position
#> [1] 3.3 4.4 5.5

44 / 107

3. Using logicals to return elements where corresponding logical is TRUE
(subset atomic vectors using []) [cont.]

The visits_by_100751 column shows how many visits the University of Alabama
made to each school. Let’s subset this to only include 2 or more visits:
df_school$visits_by_100751[1:100]
#> [1] 0
#> [36] 0
#> [71] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 2 4 4 3 3 3 3 3 3 2 3 3 3 3 1
df_school$visits_by_100751[1:100]>2
#> [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
#> [12] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
#> [23] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
#> [34] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
#> [45] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
#> [56] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
#> [67] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
#> [78] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE TRUE
#> [89] TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE
#> [100] FALSE
df_school$visits_by_100751[df_school$visits_by_100751>2]
#> [1] 5 4 4 3 3 3 3 3 3 3 3 3 3 4 4 3 3 3 3 3 4 4 3 3 3 4 3 3 3 3 3 3 3 4 3
#> [36] 3 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 3 3 3 3 4 5 3 3 3 4 3 3 4
#> [71] 3 3 3 3 3 4 3 5 4 6
#> [106] 5 3 5 5 5 3 4 4 3 3 3 5 3 4 4 3 3 3 3 4 4 3 3 4 3 3 3 3 3 3 3 3 3 3 3
#> [141] 4 3 3 3 3 3 3 3 3 3 3 3 4 3 3 3 3 3 3 3 3

45 / 107

4. Empty [] returns original vector (subset atomic vectors using [])

x
#> [1] 1.1 2.2 3.3 4.4 5.5

x[]
#> [1] 1.1 2.2 3.3 4.4 5.5

This is useful for sub-setting data frames, as we will show below

46 / 107

5. Zero vector [0] (subset atomic vectors using [])

Zero vector, x[0]
▶ R interprets this as returning element 0

x[0]
#> numeric(0)

Wickham states:
▶ “This is not something you usually do on purpose, but it can be helpful for

generating test data.”

47 / 107

6. If vector is named, character vectors to return elements with matching
names (subset atomic vectors using [])

Create vector y that has values of vector x but each element is named
x
#> [1] 1.1 2.2 3.3 4.4 5.5

(y <- c(a=1.1, b=2.2, c=3.3, d=4.4, e=5.5))
#> a b c d e
#> 1.1 2.2 3.3 4.4 5.5

Return elements of vector based on name of element
▶ enclose element names in single '' or double "" quotes

#show element named "a"
y["a"]
#> a
#> 1.1

#show elements "a", "b", and "d"
y[c("a", "b", "d")]
#> a b d
#> 1.1 2.2 4.4

48 / 107

Subsetting lists/data frames using []

49 / 107

Subsetting lists using []
Using [] operator to subset lists works the same as subsetting atomic vector

▶ Using [] with a list always returns a list
list_a <- list(list(1,2),3,"apple")
str(list_a)
#> List of 3
#> $:List of 2
#> ..$: num 1
#> ..$: num 2
#> $: num 3
#> $: chr "apple"

#create new list that consists of elements 3 and 1 of list_a
list_b <- list_a[c(3, 1)]
str(list_b)
#> List of 2
#> $: chr "apple"
#> $:List of 2
#> ..$: num 1
#> ..$: num 2

#show elements 3 and 1 of object list_a
#str(list_a[c(3, 1)])

50 / 107

Subsetting data frames using []

Recall that a data frame is just a particular kind of list
▶ each element = a column = a variable

Using [] with a list always returns a list

▶ Using [] with a data frame always returns a data frame

Two ways to use [] to extract elements of a data frame

1. use “single index” df_name[<columns>] to extract columns (variables) based on
element position number (i.e., column number)

2. use “double index” df_name[<rows>, <columns>] to extact particular rows and
columns of a data frame

51 / 107

Subsetting data frames using [] to extract columns (variables) based on
element position

Use “single index” df_name[<columns>] to extract columns (variables) based on
element number (i.e., column number)

Examples [output omitted]
names(df_event)

#extract elements 1 through 4 (elements=columns=variables)
df_event[1:4]
df_event[c(1,2,3,4)]

str(df_event[1:4])
#extract columns 13 and 7
df_event[c(13,7)]

52 / 107

Subsetting Data Frames to extract columns (variables) and rows
(observations) based on positionality

use “double index” syntax df_name[<rows>, <columns>] to extact particular rows
and columns of a data frame

▶ often combined with sequences (e.g., 1:10)
#Return rows 1-3 and columns 1-4
df_event[1:3, 1:4]
#> # A tibble: 3 x 4
#> instnm univ_id instst pid
#> <chr> <int> <chr> <int>
#> 1 UM Amherst 166629 MA 57570
#> 2 UM Amherst 166629 MA 56984
#> 3 UM Amherst 166629 MA 57105

#Return rows 50-52 and columns 10 and 20
df_event[50:52, c(10,20)]
#> # A tibble: 3 x 2
#> event_state pct_tworaces_zip
#> <chr> <dbl>
#> 1 MA 1.98
#> 2 MA 1.98
#> 3 MA 1.98

53 / 107

Subsetting Data Frames to extract columns (variables) and rows
(observations) based on positionality

use “double index” syntax df_name[<rows>, <columns>] to extact particular rows
and columns of a data frame

recall that empty [] returns original object (output omitted)
#return original data frame
df_event[]

#return specific rows and all columns (variables)
df_event[1:5,]

#return all rows and specific columns (variables)
df_event[, c(1,2,3)]

54 / 107

Use [] to extract data frame columns based on variable names

Selecting columns from a data frame by subsetting with [] and list of element
names (i.e., variable names) enclose in quotes

“single index” approach extracts specific variables, all rows (output omitted)
df_event[c("instnm", "univ_id", "event_state")]

“Double index” approach extracts specific variables and specific rows
▶ syntax df_name[<rows>, <columns>]

df_event[1:5, c("instnm", "event_state", "event_type")]
#> # A tibble: 5 x 3
#> instnm event_state event_type
#> <chr> <chr> <chr>
#> 1 UM Amherst MA public hs
#> 2 UM Amherst MA public hs
#> 3 UM Amherst MA public hs
#> 4 UM Amherst MA public hs
#> 5 Stony Brook MA public hs

55 / 107

Student exercises

Use subsetting operators from base R in extracting columns (variables), observations:
1. Use both “single index” and “double index” in subsetting to create a new

dataframe by extracting the columns instnm , event_date , event_type from
the df_event data frame. And show what columns (variables) are in the newly
created dataframe.

2. Use subsetting to return rows 1-5 of columns state_code , name , address
from the df_school data frame.

56 / 107

Solution to Student Exercises

Solution to 1
base R using subsetting operators
single index
df_event_br <- df_event[c("instnm", "event_date", "event_type")]
#double index
df_event_br <- df_event[, c("instnm", "event_date", "event_type")]
names(df_event_br)
#> [1] "instnm" "event_date" "event_type"

Solution to 2
base R using subsetting operators
df_school[1:5, c("state_code", "name", "address")]
#> # A tibble: 5 x 3
#> state_code name address
#> <chr> <chr> <chr>
#> 1 AK Bethel Regional High School 1006 Ron Edwards Memorial Dr
#> 2 AK Ayagina'ar Elitnaurvik 106 Village Road
#> 3 AK Kwigillingok School 108 Village Road
#> 4 AK Nelson Island Area School 118 Village Road
#> 5 AK Alakanuk School 9 School Road

57 / 107

Subsetting lists/data frames using [[]] and $

58 / 107

Subset single element from object using [[]] operator, atomic vectors

So far we have used [] to extract elements from an object

▶ Apply [] to atomic vector: returns atomic vector with elements you requested
▶ Apply [] to list: returns list with elements you requested

[[]] also extract elements from an object

▶ Applying [[]] to atomic vector gives same result as [] ; that is, an atomic
vector with element you request

(x <- c(1.1, 2.2, 3.3, 4.4, 5.5))
#> [1] 1.1 2.2 3.3 4.4 5.5

str(x[3])
#> num 3.3

str(x[[3]])
#> num 3.3

▶ Applying [[]] to a list
▶ Understanding what [] vs. [[]] does to a list is very important but requires some

explanation!

59 / 107

Subsetting lists using [] vs. [[]] , introduce “train metaphor”

Advanced R chapter 4.3 by Wickham uses the “train metaphor” to explain a list
vs. contents of a list and how this relates to [] vs. [[]]

Below code chunk makes a list named list_x that contains 3 elements
list_x <- list(1:3, "a", 4:6) # create list object list_x

In our train metaphor, object list_x is a train that contains 3 carriages

60 / 107

https://adv-r.hadley.nz/subsetting.html#subset-single
https://adv-r.hadley.nz/subsetting.html#subset-single

Subsetting lists using [] vs. [[]] , introduce “train metaphor”
list object list_x is a train that contains 3 carriages

When we “subset a list” – that is, extract one or more elements from the list – we
have two broad choices (image below)

1. Extracting elements using [] always returns a list, usually one with fewer
elements

▶ you can think of this as a train with fewer carriages
str(list_x[1]) # returns a list
#> List of 1
#> $: int [1:3] 1 2 3

2. Extracting element using [[]] returns contents of particular carriage
▶ I say applying [[]] to a list or data frame returns a simpler object that moves up one

level of hierarchy
str(list_x[[1]]) # returns an atomic vector
#> int [1:3] 1 2 3

61 / 107

Subset lists using [] vs. [[]] , deepen understanding of []
Rules about applying subset operator [] to a list

▶ Applying [] to a list always returns a list
▶ Resulting list contains 1 or more elements depending on what typed inside []

Here is a list object named list_x
list_x <- list(1:3, "a", 4:6)

Here is an image of a few “trains” that can be created by applying [] to list_x

And here is code to create the “trains” shown in above image (output omitted)
list_x[1:2]
list_x[-2]
list_x[c(1,1)]
list_x[0]
list_x[] # returns the original list; not shown in above train picture

62 / 107

Subset lists using [] vs. [[]] , deepen understanding of [[]]
Rules about applying subset operator [[]] to a list

▶ Can apply [[]] to return the contents of a single element of a list

Create list list_x and show “train” Image of applying list_x[1]
vs. list_x[[1]]
list_x <- list(1:3, "a", 4:6)

Object created by list_x[1] is a list with one element (output omitted)
list_x[1]
str(list_x[1])

Object created by list_x[[1]] is a vector with 3 elements (output omitted)

▶ list_x[[1]] gives us “contents” of element 1
▶ Since element 1 contains a numeric vector, object created by list_x[[1]] is a

numeric vector
list_x[[1]]
str(list_x[[1]])

63 / 107

Subset lists using [] vs. [[]] , deepen understanding of [[]]

Rules about applying subset operator [[]] to a list

▶ Can apply [[]] to return the contents of a single element of a list
list_x <- list(1:3, "a", 4:6) # create list list_x

We cannot use [[]] to subset multiple elements of a list (output omitted)

▶ e.g., we could write list_x[[2]] but not list_x[[2:3]]
list_x[[c(2)]] # this works, subset element 2 using [[]]
list_x[[c(2,3)]] # this doesn't work; subset element 2 and 3 using [[]]
list_x[c(2,3)] # this works; subset element 2 and 3 using []

64 / 107

Subset lists using [] vs. [[]] , deepen understanding of [[]]
Like [] , can use [[]] to return contents of named elements specified using quotes

▶ syntax: obj_name[["element_name"]]

Same list as before, but this time elements named
list_x <- list(var1=1:3, var2="a", var3=4:6)

Subset list list_x using [[]] element names vs. element position
list_x[["var1"]]
#> [1] 1 2 3

list_x[[1]] # same as above
list_x[["var3"]]
#> [1] 4 5 6

list_x[[3]] # same as above

We can do the same thing with data frames because data frames are lists
▶ e.g., df_event[["zip"]] returns contents of element named "zip"
▶ object created by df_event[["zip"]] is character vector of length = 18,680

df_event[["zip"]] # this works but long output
str(df_event[["zip"]])
#> chr [1:18680] "01002" "01007" "01020" "01020" "01027" "01027" "01027" ...
typeof(df_event[["zip"]])
#> [1] "character"
length(df_event[["zip"]])
#> [1] 18680 65 / 107

General rules of applying [] vs [[]] to (nested) objects

What we just learned about applying [] vs [[]] to lists applies more generally to
“nested objects”

▶ “nested objects” are objects with a hierarchical structure such that an element of
an object contains another object

General rules of applying [] vs. [[]] to nested objects

▶ subset any object x using [] will return object with same data structure as x
▶ subset any object x using [[]] will return an object thay may or may not have

same data structure of x
▶ if object x is not a nested object, then applying [[]] to a single element of x will

return object with same data structure as x
▶ if object x has a nested data structure, then then applying [[]] to a single element

of x will “move up one level of hierarchy” to extract the contents of element x

66 / 107

Subset lists/data frames using $

list_x <- list(var1=1:3, var2="a", var3=4:6)

obj_name$element_name is shorthand operator for obj_name[["element_name"]]

These three lines of code all give the same result
list_x[[1]]
#> [1] 1 2 3
list_x[["var1"]]
#> [1] 1 2 3
list_x$var1
#> [1] 1 2 3

df_name$var_name : easiest way in base R to refer to variable in a data frame
▶ these two lines of code are equivalent

str(df_event[["zip"]])
#> chr [1:18680] "01002" "01007" "01020" "01020" "01027" "01027" "01027" ...
str(df_event$zip)
#> chr [1:18680] "01002" "01007" "01020" "01020" "01027" "01027" "01027" ...

67 / 107

Subset Data frames by combining [] and $

68 / 107

Subset Data Frames by combining [] and $, Motivation

Motivation
▶ When working with data frames we often want to isolate those observations that

satisfy certain conditions
▶ This is often referred to as “filtering”

▶ We filter observations based on the values of one or more variables
▶ Perhaps you have seen “filtering” in Microsoft Excel

▶ open some spreadsheet that contains variables (columns) and observations (rows)
▶ click on Data » Filter and then filter observations based on values of variable(s)

Filtering example using data frame df_school
▶ Observations:

▶ One observation per high school (public and private)
▶ Variables:

▶ high school characteristics; number of off-campus recruiting visits from particular
universities

▶ NCES ID for UC Berkeley is 110635
▶ variable visits_by_110635 shows number of visits a high school received from UC

Berkeley
▶ Task:

▶ Isolate observations where the high school received at least 1 visit from UC Berkeley

69 / 107

Subset Data Frames by combining [] and $

Task:
▶ Using df_school , isolate obs where school received at least 1 visit from UC

Berkeley

General syntax: df_name[df_name$var_name <condition>,]

▶ Note that syntax uses “double index” df_name[<rows>, <columns>] syntax
▶ Therefore, the <condition> in above syntax is isolating <rows>

▶ Cannot use “single index” syntax df_name[<columns>]

Solution to task (output omitted)
▶ Note: below code filters observations but keeps all variables

df_school[df_school$visits_by_110635 >= 1,]

70 / 107

Subset Data Frames by combining [] and $, decompose syntax
Task: Isolate obs where school received at least 1 visit from UC Berkeley

▶ general syntax: df_name[df_name$var_name <condition>,]
▶ solution: df_school[df_school$visits_by_110635 >= 1,]

Decomposing syntax df_school[df_school$visits_by_110635 >= 1,]

▶ df_school$visits_by_110635 >= 1 : returns a logical (TRUE / FALSE) atomic
vector with length equal to number of obs in df_school

str(df_school$visits_by_110635 >= 1)

▶ df_school[df_school$visits_by_110635 >= 1,]
▶ uses “double index” df_name[<rows>, <columns>] syntax to extract rows, columns
▶ rows: extract rows where df_school$visits_by_110635 >= 1 is TRUE
▶ columns: since <columns> is empty, extracts all columns

key point

▶ df_name[df_name$var_name <condition>,] is an example of “subset a vector
approach #3”: “Using logicals to return elements where condition TRUE ”

▶ example using atomic vectors (output omitted)
x <- c(1.1, 2.2, 3.3, 4.4, 5.5)
x[x>3]

71 / 107

Subset Data Frames by combining [] and $, keep desired columns

▶ General syntax to filter desired observations (rows) and variables (columns) of
data frame:

▶ df_name[df_name$var_name <condition>, <desired columns>]

Tasks (output omitted)
▶ Extract observations where the high school received at least 1 visit from UC

Berkeley and the first three columns
df_school[df_school$visits_by_110635 >= 1, 1:3]

▶ Extract observations where the high school received at least 1 visit from UC
Berkeley and variables “state_code” “school_type” “name”

df_school[df_school$visits_by_110635 >= 1, c("state_code","school_type","name")]

72 / 107

Subset Data Frames by combining [] and $, more examples
Syntax:

▶ filter based on one variable:
▶ df_name[df_name$var_name <condition>, <columns>]

▶ Example syntax to filter based on two conditions being true
▶

df_name[df_name$var_name <condition> & df_name$var_name <condition>, <columns>]

Pro tip:
▶ wrap above syntax within nrow() function to count how many observations

(rows) satisfy the condition (as opposed to printing all rows that satisfy condition)
Tasks

▶ Count obs where high schools received at least 1 visit by Bama (100751) and at
least one visit by Berkeley (110635)

nrow(df_school[df_school$visits_by_110635 >= 1 &
df_school$visits_by_100751 >= 1,])

#> [1] 247
Equivalently:
nrow(df_school[df_school[["visits_by_110635"]] >= 1 &
df_school[["visits_by_100751"]] >= 1,])

▶ Count obs where schools received 1+ visit by Bama or 1+ visit by Berkeley
nrow(df_school[df_school$visits_by_110635 >= 1

| df_school$visits_by_100751 >= 1,])
#> [1] 2763

73 / 107

Logical operators for comparisons
▶ Logical operators to isolate/filter observations of data frame

Symbol Meaning
== Equal to
!= Not equal to
> greater than
>= greater than or equal to
< less than
<= less than or equal to
& AND
| OR
%in% includes

▶ Visualization of “Boolean” operators (e.g., AND, OR, AND NOT)

Figure 1: “Boolean” operations, x=left circle, y=right circle, from Wichkam (2018)

74 / 107

Subset Data Frames by combining [] and $, more examples
Example: Count the number of out-of-state high schools that UC Berkeley visited.
The `inst_110635` variable contains the home state of UC Berkeley
unique(df_school$inst_110635)
#> [1] "CA"

Filter for schools visited by UC Berkeley AND whose state is not "CA"
nrow(df_school[df_school$visits_by_110635 >= 1 &

df_school$state_code != df_school$inst_110635,])
#> [1] 302

Example: Count the number of schools in the Northeast that received a visit from
either UC Berkeley, U of Alabama, or CU Boulder.
Vector containing states located in the Northeast region
northeast_states <- c('CT', 'ME', 'MA', 'NH', 'RI', 'VT', 'NJ', 'NY', 'PA')

Filter for schools in the Northeast AND visited by any of the 3 univs
nrow(df_school[df_school$state_code %in% northeast_states &

(df_school$visits_by_110635 >= 1 |
df_school$visits_by_100751 >= 1 |
df_school$visits_by_126614 >= 1),])

#> [1] 544

75 / 107

Subset Data Frames by combining [] and $, NA Observations

Filtering observations of data frame using [] combined with $ is more complicated
in the presence of missing values (NA values)

The next few slides will explain
▶ why it is more complicated
▶ how to filter correctly when NA s are present

76 / 107

Subset Data Frames by combining [] and $, NA Observations
When sub-setting via [] combined with $, result will include:

▶ rows where condition is TRUE
▶ as well as rows with NA (missing) values for condition.

Task (using df_event , which has one obs per university, recruiting event)
▶ How many events at public high schools with at least $50k median household

income?
Extracting observations via [] combined with $
#num obs event_type=="public hs" and med_inc is missing
nrow(df_event[df_event$event_type == "public hs"

& is.na(df_event$med_inc)==1 ,])
#> [1] 75

#num obs event_type=="public hs" & med_inc is not NA & med_inc >= $50,000
nrow(df_event[df_event$event_type == "public hs"

& is.na(df_event$med_inc)==0 & df_event$med_inc>=50000 ,])
#> [1] 9941

#num obs event_type=="public hs" and med_inc >= $50,000
nrow(df_event[df_event$event_type == "public hs"

& df_event$med_inc>=50000 ,])
#> [1] 10016

77 / 107

Subset Data Frames by combining [] and $, NA Observations

To exclude rows where condition is NA if subset using [] combined w/ $

▶ use which() to ask only for values where condition evaluates to TRUE
▶ which() returns position numbers for elements where condition is TRUE

#?which
c(TRUE,FALSE,NA,TRUE)
#> [1] TRUE FALSE NA TRUE
str(c(TRUE,FALSE,NA,TRUE))
#> logi [1:4] TRUE FALSE NA TRUE
which(c(TRUE,FALSE,NA,TRUE))
#> [1] 1 4

Task: Count events at public HS with at least $50k median household income?
#Base R, `[]` combined with `$`; without which()
nrow(df_event[df_event$event_type == "public hs" & df_event$med_inc>=50000,])
#> [1] 10016

#Base R, `[]` combined with `$`; with which()
nrow(df_event[which(df_event$event_type == "public hs"

& df_event$med_inc>=50000),])
#> [1] 9941

78 / 107

Student Exercises

Subsetting Data Frames with [] and $:
1. Show how many public high schools in California with at least 50% Latinx

(hispanic in data) student enrollment from df_school.
2. Show how many out-state events at public high schools with more than $30K

median from df_event (do not forget to exclude missing values).

79 / 107

Solution to Student Exercises

Solution to 1
base R using [] and $
df_school_br1<- df_school[df_school$school_type == "public"

& df_school$pct_hispanic >= 50
& df_school$state_code == "CA",]

nrow(df_school_br1)
#> [1] 713

80 / 107

Solution to Student Exercises

Solution to 2:
base R using [] and $
use is.na to exclude NA
nrow(df_event[df_event$event_type == "public hs" & df_event$event_inst =="Out-State"

& df_event$med_inc > 30000 & is.na(df_event$med_inc) ==0,])
#> [1] 7784

use which to exclude NA
nrow(df_event[which(df_event$event_type == "public hs" & df_event$event_inst =="Out-State"

& df_event$med_inc > 30000),])
#> [1] 7784

81 / 107

Subset using subset() function

82 / 107

Subset function

The subset() is a base R function to “filter” observations from some object x
▶ object x can be a matrix, data frame, list
▶ subset() automatically excludes elements/rows with NA for condition
▶ Can also use subset() to select variables
▶ subset() can be combined with:

▶ assignment (<-) to create new objects
▶ nrow() to count number of observations that satisfy criteria

?subset

Syntax [when object is data frame]: subset(x, subset, select, drop = FALSE)
▶ x is object to be subset
▶ subset is the logical expression(s) (evaluates to TRUE/FALSE) indicating

elements (rows) to keep
▶ select indicates columns to select from data frame (if argument is not used

default will keep all columns)
▶ drop to preserve original dimensions [SKIP]

▶ can take values TRUE or FALSE ; default is FALSE
▶ only need to worry about dataframes when subset output is single column

83 / 107

Subset function, examples

Recall the previous example where we count events at public HS with at least $50k
median household income. Note that subset() automatically excludes rows where
condition is NA :
#Base R, `[]` combined with `$`, without which(); includes `NA`
nrow(df_event[df_event$event_type == "public hs"

& df_event$med_inc>=50000,])
#> [1] 10016

#Base R, `[]` combined with `$`, with which(); excludes `NA`
nrow(df_event[which(df_event$event_type == "public hs"

& df_event$med_inc>=50000),])
#> [1] 9941

#Base R, `subset()`; excludes `NA`
nrow(subset(df_event, event_type == "public hs"

& med_inc>=50000))
#> [1] 9941

84 / 107

Subset function, examples

Using df_school , show all public high schools that are at least 50% Latinx
(var= pct_hispanic) student enrollment in California

▶ Using base R, subset() [output omitted]
#public high schools with at least 50% Latinx student enrollment
subset(df_school, school_type == "public" & pct_hispanic >= 50

& state_code == "CA")

85 / 107

Subset function, examples

Count all CA public high schools that are at least 50% Latinx
▶ Can wrap subset() within nrow() to count number of observations that

satisfy criteria
nrow(subset(df_school, school_type == "public" & pct_hispanic >= 50

& state_code == "CA"))
#> [1] 713

86 / 107

Subset function, examples

Note that subset() identify the number of observations for which the condition is
TRUE
nrow(subset(df_school, TRUE))
#> [1] 21301
nrow(subset(df_school, FALSE))
#> [1] 0

87 / 107

Subset function, examples

Count all CA public high schools that are at least 50% Latinx and received at least 1
visit from UC Berkeley (var= visits_by_110635)
nrow(subset(df_school, school_type == "public" & pct_hispanic >= 50

& state_code == "CA" & visits_by_110635 >= 1))
#> [1] 100

88 / 107

Subset function, examples

subset() can also use %in% operator, which is more efficient version of OR
operator |

▶ Count number of schools from MA, ME, or VT that received at least one visit
from University of Alabama (var= visits_by_100751)

nrow(subset(df_school, state_code %in% c("MA","ME","VT")
& visits_by_100751 >= 1))

#> [1] 108

89 / 107

Subset function, examples

Use the select argument within subset() to keep selected variables

▶ syntax: select = c(var_name1,var_name2,...,var_name_n)

Subset all CA public high schools that are at least 50% Latinx AND only keep
variables name and address
subset(df_school, school_type == "public" & pct_hispanic >= 50

& state_code == "CA", select = c(name, address))
#> # A tibble: 713 x 2
#> name address
#> <chr> <chr>
#> 1 Tustin High 1171 El Camino Real
#> 2 Bell Gardens High 6119 Agra St.
#> 3 Santa Ana High 520 W. Walnut
#> 4 Warren High 8141 De Palma St.
#> 5 Hollywood Senior High 1521 N. Highland Ave.
#> 6 Venice Senior High 13000 Venice Blvd.
#> 7 Sequoia High 1201 Brewster Ave.
#> 8 Santa Barbara Senior High 700 E. Anapamu St.
#> 9 Santa Paula High 404 N. Sixth St.
#> 10 Azusa High 240 N. Cerritos Ave.
#> # ... with 703 more rows

90 / 107

Subset function, examples

Combine subset() with assignment (<-) to create a new data frame
Create a new date frame of all CA public high schools that are at least 50% Latinx
AND only keep variables name and address
df_school_v2 <- subset(df_school, school_type == "public" & pct_hispanic >= 50

& state_code == "CA", select = c(name, address))

head(df_school_v2, n=5)
#> # A tibble: 5 x 2
#> name address
#> <chr> <chr>
#> 1 Tustin High 1171 El Camino Real
#> 2 Bell Gardens High 6119 Agra St.
#> 3 Santa Ana High 520 W. Walnut
#> 4 Warren High 8141 De Palma St.
#> 5 Hollywood Senior High 1521 N. Highland Ave.

nrow(df_school_v2)
#> [1] 713

91 / 107

Student Exercises

Using subset() from base R:

1. Create a new dataframe by extracting the columns instnm , event_date ,
event_type from df_event data frame. And show what columns (variables)

are in the newly created dataframe.
2. Create a new dataframe from the df_school data frame that includes

out-of-state public high schools with 50%+ Latinx student enrollment that
received at least one visit by the University of California Berkeley (var=
visits_by_110635). And count the number of observations.

3. Count the number of public schools from CA, FL or MA that received one or two
visits from UC Berkeley from the df_school data frame.

4. Subset all public out-of-state high schools visited by University of California
Berkeley that enroll at least 50% Black students, and only keep variables
state_code , name and zip_code .

92 / 107

Solution to Student Exercises

Solution to 1
df_event_br <- subset(df_event, select=c(instnm, event_date, event_type))
names(df_event_br)
#> [1] "instnm" "event_date" "event_type"

Solution to 2
df_school_br <- subset(df_school, state_code != "CA" & school_type == "public"

& pct_hispanic >= 50 & visits_by_110635 >=1)
nrow(df_school_br)
#> [1] 10

Solution to 3
nrow(subset(df_school, state_code %in% c("CA", "FL", "MA")

& school_type == "public" & visits_by_110635 %in% c(1,2)))
#> [1] 246

93 / 107

Solution to Student Exercises

Solution to 4
subset(df_school, school_type == "public" & state_code != "CA"

& visits_by_110635 >= 1 & pct_black >= 50,
select = c(state_code, name, zip_code))

#> # A tibble: 10 x 3
#> state_code name zip_code
#> <chr> <chr> <chr>
#> 1 GA Grady High School 30309
#> 2 MD Frederick Douglass High 20772
#> 3 MN DOWNTOWN CAMPUS 55403
#> 4 MS MURRAH HIGH SCHOOL 39202
#> 5 OH Shaker Hts High School 44120
#> 6 OH Cleveland Heights High School 44118
#> 7 SC Spring Valley High 29229
#> 8 SC Richland Northeast High 29223
#> 9 TN Soulsville Charter School 38106
#> 10 TN KIPP Memphis Collegiate High School 38108

94 / 107

Creating variables

95 / 107

Create new data frame based on df_school_all

Data frame df_school_all has one obs per US high school and then variables
identifying number of visits by particular universities
load(url("https://github.com/ozanj/rclass/raw/master/data/recruiting/recruit_school_allvars.RData"))
names(df_school_all)
#> [1] "state_code" "school_type" "ncessch"
#> [4] "name" "address" "city"
#> [7] "zip_code" "pct_white" "pct_black"
#> [10] "pct_hispanic" "pct_asian" "pct_amerindian"
#> [13] "pct_other" "num_fr_lunch" "total_students"
#> [16] "num_took_math" "num_prof_math" "num_took_rla"
#> [19] "num_prof_rla" "avgmedian_inc_2564" "latitude"
#> [22] "longitude" "visits_by_196097" "visits_by_186380"
#> [25] "visits_by_215293" "visits_by_201885" "visits_by_181464"
#> [28] "visits_by_139959" "visits_by_218663" "visits_by_100751"
#> [31] "visits_by_199193" "visits_by_110635" "visits_by_110653"
#> [34] "visits_by_126614" "visits_by_155317" "visits_by_106397"
#> [37] "visits_by_149222" "visits_by_166629" "total_visits"
#> [40] "inst_196097" "inst_186380" "inst_215293"
#> [43] "inst_201885" "inst_181464" "inst_139959"
#> [46] "inst_218663" "inst_100751" "inst_199193"
#> [49] "inst_110635" "inst_110653" "inst_126614"
#> [52] "inst_155317" "inst_106397" "inst_149222"
#> [55] "inst_166629"

96 / 107

Create new data frame based on df_school_all
Create new version of data frame, called school_v2 , which we’ll use to introduce
how to create new variables
library(tidyverse) # below code use tidyverse functions and pipe operator
#> -- Attaching packages -- tidyverse 1.2.1 --
#> v ggplot2 3.2.1 v purrr 0.3.3
#> v tibble 2.1.3 v dplyr 0.8.3
#> v tidyr 1.0.0 v stringr 1.4.0
#> v readr 1.3.1 v forcats 0.4.0
#> -- Conflicts --- tidyverse_conflicts() --
#> x dplyr::filter() masks stats::filter()
#> x dplyr::lag() masks stats::lag()
school_v2 <- df_school_all %>%

select(-contains("inst_")) %>% # remove vars that start with "inst_"
rename(# rename selected variables

visits_by_berkeley = visits_by_110635,
visits_by_boulder = visits_by_126614,
visits_by_bama = visits_by_100751,
visits_by_stonybrook = visits_by_196097,
visits_by_rutgers = visits_by_186380,
visits_by_pitt = visits_by_215293,
visits_by_cinci = visits_by_201885,
visits_by_nebraska = visits_by_181464,
visits_by_georgia = visits_by_139959,
visits_by_scarolina = visits_by_218663,
visits_by_ncstate = visits_by_199193,
visits_by_irvine = visits_by_110653,
visits_by_kansas = visits_by_155317,
visits_by_arkansas = visits_by_106397,
visits_by_sillinois = visits_by_149222,
visits_by_umass = visits_by_166629,
num_took_read = num_took_rla,
num_prof_read = num_prof_rla,
med_inc = avgmedian_inc_2564

)

glimpse(school_v2)

97 / 107

Base R approach to creating new variables
Create new variables using assignment operator <- and subsetting operators [] and
$ to create new variables and set conditions of the input variables

Pseudo syntax: df$newvar <- ...
▶ where ... argument is expression(s)/calculation(s) used to create new variables

▶ expressions can include subsetting operators and/or other base R functions

Task: Create measure of percent of students on free-reduced lunch
base R approach
school_v2_temp<- school_v2 #create copy of dataset; not necessary
school_v2_temp$pct_fr_lunch <-

school_v2_temp$num_fr_lunch/school_v2_temp$total_students

#investigate variable you created
str(school_v2_temp$pct_fr_lunch)
#> num [1:21301] 0.723 1 0.967 0.93 1 ...
school_v2_temp$pct_fr_lunch[1:5] # print first 5 obs
#> [1] 0.7225549 1.0000000 0.9666667 0.9303483 1.0000000

tidyverse approach (with pipes)
school_v2_temp <- school_v2 %>%

mutate(pct_fr_lunch = num_fr_lunch/total_students)

98 / 107

Base R approach to creating new variables

If creating new variable based on the condition/values of input variables, basically the
tidyverse equivalent of mutate() with if_else() or recode()

▶ Pseudo syntax: df$newvar[logical condition]<- new value
▶ logical condition : a condition that evaluates to TRUE or FALSE

99 / 107

Base R approach to creating new variables
Task: Create 0/1 indicator if school has median income greater than $100k
tidyverse approach (using pipes)
school_v2_temp %>% select(med_inc) %>%

mutate(inc_gt_100k= if_else(med_inc>100000,1,0)) %>%
count(inc_gt_100k) # note how NA values of med_inc treated

#> # A tibble: 3 x 2
#> inc_gt_100k n
#> <dbl> <int>
#> 1 0 18632
#> 2 1 2045
#> 3 NA 624

Base R approach
school_v2_temp$inc_gt_100k<-NA #initialize an empty column with NAs

otherwise you'll get warning
school_v2_temp$inc_gt_100k[school_v2_temp$med_inc>100000] <- 1
school_v2_temp$inc_gt_100k[school_v2_temp$med_inc<=100000] <- 0
count(school_v2_temp, inc_gt_100k)
#> # A tibble: 3 x 2
#> inc_gt_100k n
#> <dbl> <int>
#> 1 0 18632
#> 2 1 2045
#> 3 NA 624

100 / 107

Creating variables
Task: Using data frame wwlist and input vars state and firstgen , create a
4-category var with following categories:

▶ “instate_firstgen”; “instate_nonfirstgen”; “outstate_firstgen”;
“outstate_nonfirstgen”

tidyverse approach (using pipes)
load(url("https://github.com/ozanj/rclass/raw/master/data/prospect_list/wwlist_merged.RData"))
wwlist_temp <- wwlist %>%

mutate(state_gen = case_when(
state == "WA" & firstgen =="Y" ~ "instate_firstgen",
state == "WA" & firstgen =="N" ~ "instate_nonfirstgen",
state != "WA" & firstgen =="Y" ~ "outstate_firstgen",
state != "WA" & firstgen =="N" ~ "outstate_nonfirstgen")

)
str(wwlist_temp$state_gen)
#> chr [1:268396] NA "instate_nonfirstgen" "instate_nonfirstgen" ...
wwlist_temp %>% count(state_gen)
#> # A tibble: 5 x 2
#> state_gen n
#> <chr> <int>
#> 1 instate_firstgen 32428
#> 2 instate_nonfirstgen 58646
#> 3 outstate_firstgen 32606
#> 4 outstate_nonfirstgen 134616
#> 5 <NA> 10100

101 / 107

Base R approach to creating new variables
Task: Using wwlist and input vars state and firstgen , create a 4-category var

base R approach
wwlist_temp <- wwlist

wwlist_temp$state_gen <- NA
wwlist_temp$state_gen[wwlist_temp$state == "WA"

& wwlist_temp$firstgen =="Y"] <- "instate_firstgen"
wwlist_temp$state_gen[wwlist_temp$state == "WA"

& wwlist_temp$firstgen =="N"] <- "instate_nonfirstgen"
wwlist_temp$state_gen[wwlist_temp$state != "WA"

& wwlist_temp$firstgen =="Y"] <- "outstate_firstgen"
wwlist_temp$state_gen[wwlist_temp$state != "WA"

& wwlist_temp$firstgen =="N"] <- "outstate_nonfirstgen"

str(wwlist_temp$state_gen)
#> chr [1:268396] NA "instate_nonfirstgen" "instate_nonfirstgen" ...
count(wwlist_temp, state_gen)
#> # A tibble: 5 x 2
#> state_gen n
#> <chr> <int>
#> 1 instate_firstgen 32428
#> 2 instate_nonfirstgen 58646
#> 3 outstate_firstgen 32606
#> 4 outstate_nonfirstgen 134616
#> 5 <NA> 10100

102 / 107

Appendix

103 / 107

Sorting data

104 / 107

Base R sort() for vectors

sort() is a base R function that sorts vectors

Syntax: sort(x, decreasing=FALSE, ...)

▶ where x is object being sorted
▶ By default it sorts in ascending order (low to high)
▶ Need to set decreasing argument to TRUE to sort from high to low

#?sort()
x<- c(31, 5, 8, 2, 25)
sort(x)
#> [1] 2 5 8 25 31
sort(x, decreasing = TRUE)
#> [1] 31 25 8 5 2

105 / 107

Base R order() for dataframes

order() is a base R function that sorts vectors

▶ Syntax: order(..., na.last = TRUE, decreasing = FALSE)
▶ where ... are variable(s) to sort by
▶ By default it sorts in ascending order (low to high)
▶ Need to set decreasing argument to TRUE to sort from high to low

Descending argument only works when we want either one (and only) variable
descending or all variables descending (when sorting by multiple vars)

▶ use - when you want to indicate which variables are descending while using the
default ascending sorting

df_event[order(df_event$event_date),]
df_event[order(df_event$event_date, df_event$total_12),]

#sort descending via argument
df_event[order(df_event$event_date, decreasing = TRUE),]
df_event[order(df_event$event_date, df_event$total_12, decreasing = TRUE),]

#sorting by both ascending and descending variables
df_event[order(df_event$event_date, -df_event$total_12),]

106 / 107

Example, sorting

▶ Create a new dataframe from df_events that sorts by ascending by event_date ,
ascending event_state , and descending pop_total .

base R using order() function:
df_event_br1 <- df_event[order(df_event$event_date, df_event$event_state,

-df_event$pop_total),]

107 / 107

	Investigate objects, base R
	Functions to describe objects
	Variables names
	View and print data
	Missing values

	Subsetting using subset operators
	Subset atomic vectors using []
	Subsetting lists/data frames using []
	Subsetting lists/data frames using [[]] and $
	Subset Data frames by combining [] and $

	Subset using subset() function
	Creating variables
	Appendix
	Sorting data

